Journal of Nonlinear Analysis and Optimization Vol. 14, Issue. 2, No. 1: 2023 ISSN : **1906-9685**

INTUITIONISTIC FUZZY q- IDEALS OF BCI – ALGEBRAS WITH DEGREES IN THE INTERVAL (0, 1]

R. Devi Assistant Professor of Mathematics, L.R.G Government Arts College for Women, Tirupur – 641 604. [Email: devi16121980@gmail.com]

Abstract

The notion of an enlarged q-ideal and an Intuitionistic fuzzy q-ideal in BCI-algebras with degree are introduced. Related properties of them are investigated.

Key Words: Enlarged q-ideal, Intuitionistic Fuzzy q-Ideals with degree. 2010 Mathematics Subject Classification : 03G25, 06F35,08A72.

1. Introduction

BCK- algebras and BCI-algebras are two classes of logical algebras, which were initiated by K. Iseki[5,6]. The notion of fuzzy sets, invented by L.A. Zadeh[11], has been applied in many field. In 1991, O.G. Xi[10] applied it to BCK-algebras. Since then fuzzy BCK/BCI-algebras have been extensively investigated by several researchers. The concept of a fuzzy set is applied to generalize some of the basic concepts of general topology[3]. Rosenfeld [9] constituted a similar application to the elementary theory of groupoids and groups. Xi[10] applied to the concept of fuzzy set to BCKalgebras. Y. L.Liu et al.[8] defined the notions of q-ideals and a-ideals in BCI-algebras and studied their properties. The idea of "Intuitionistic fuzzy set" was first published by Atanassov [1,2] as a generalization of the notion of fuzzy sets. After that many researchers considered the Intuitionistic fuzzification of ideas and subalgebras in BCI/BCK – algebras. The aim of this paper is to introduce the notion of an enlarged q-ideals and Intuitionistic fuzzy q-ideals in BCI- algebras with degree and study related properties of them.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

(a1)
$$(\forall x, y, z \in X) (((x * y) * (x * z)) * (z * y) = 0),$$

(a2)
$$(\forall x, y \in X) ((x * (x * y)) * y = 0),$$

(a3) $(\forall x \in X) (x * x = 0),$

(a4)
$$(\forall x, y \in X) (x * y = 0, y * x = 0) => x = y).$$

A BCI-algebra X is called a BCK-algebra if it satisfies the following identity: (a5) $(\forall x \in X) (0 * x) = 0$ In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCI-algebra X has the following properties: (b1) $(\forall x \in X) (x * 0 = x)$. (b2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y)$. (b3) $(\forall x, y \in X) (0 * (x * y) = (0 * x) * (0 * y))$. (b4) $(\forall x, y \in X) (x * (x * (x * y)) = x * y)$. 163 **JNAO** Vol. 14, Issue. 2, No. 1 : 2023 (b5) $(\forall x, y, z \in X) \ (x \le y => x * z \le y * z, \ z * y \le z * x).$ (b6) $(\forall x, y, z \in X) \ (x * z) * (y * z) \le x * y).$ (b7) $(\forall x, y, z \in X) \ (0 * (0 * ((x * z) * (y * z))) \le (0 * y) * (0 * x)).$

(b8)
$$(\forall x, y \in X)$$
 $(0 * (0 * (x * y)) = (0 * y) * (0 * x)).$

A non-empty sub-set S of a BCI-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A non-empty subset A of a BCI-algebra X is called an *ideal* of X if it satisfies: (c1) $0 \in A$,

(c2) $(\forall x \in A)(\forall y \in X)(y * x \in A => y \in A).$

Note that every ideal A of a BCI-algebra X satisfies:

 $(\forall x \in A)(\forall y \in X)(y \le x => y \in A).$

A non-empty subset A of a BCI-algebra X is called a *q-ideal* ([8]) of X if it satisfies (c1) and (c3) $(\forall x, y, z \in X)(x * (y * z) \in A \text{ and } y \in A => x * z \in A)$. Any q-ideal is an ideal, but the converse is not true in general.

Definition 2.1: A fuzzy subset μ of a BCK/BCI-algebra X is called a *fuzzy ideal* ([7]) of X if it satisfies:

(d1) $(\forall x \in X)(\mu(0) \ge \mu(x)),$ (d2) $(\forall x, y \in X)(\mu(x) \ge \min\{\mu(x * y), \mu(y)\}).$

Definition 2.2 : An Intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \gamma_A(x)) | x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in X$.

Such defined objects are studied by many authors (see example two journals: 1. Fuzzy sets and 2. Notes on Intuitionistic Fuzzy Sets) have many interesting applications not only in mathematics (See Chapter 5 in the book [2]).

For the sack of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) | x \in X\}.$

Definition 2.3: An Intuitionistic fuzzy subset $A = (\mu_A, \gamma_A)$ of a BCK/BCI-algebra X is called an *Intuitionistic fuzzy ideal* of X if it satisfies:

(i1) $(\forall x \in X)(\mu_A(0) \ge \mu_A(x)), (\gamma_A(0) \le \gamma_A(x)),$ (i2) $(\forall x, y \in X)(\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\}),$ (i3) $(\forall x, y \in X)(\gamma_A(x) \le \max\{\gamma_A(x * y), \gamma_A(y)\}).$

Proposition 2.4: If $A = (\mu_A, \gamma_A)$ is an Intuitionistic fuzzy ideal of a BCI-algebra X, then the following holds:

 $(\forall x, y \in X)(x \le y \implies \mu_A(x) \ge \mu_A(y) \text{ and } \gamma_A(x) \le \gamma_A(y)).$

3. Intuitionistic Fuzzy q-ideals of BCI-Algebras

Definition 3.1: An Intuitionistic fuzzy subset $A = (\mu_A, \gamma_A)$ of a BCI-algebra X is called an *Intuitionistic fuzzy q-ideal* of X if it satisfies (i1) and (i4) $(\forall x, y, z \in X)(\mu_A(x * z) \ge \min\{\mu_A(x * (y * z), \mu_A(y)\}),$ (i5) $(\forall x, y, z \in X)(\gamma_A(x * z) \le \max\{\gamma_A(x * (y * z), \gamma_A(y)\}).$

Example 3.2: Let $X = \{0, a, b, c\}$ be a BCI-algebra in which the * - operation is given by the following table:

*	0	а	b	с
0	0	а	b	с
a	a	0	с	b
b	b	с	0	а
С	С	b	a	0

Note that {0,a} is a q-ideal of X. Define an Intuitionistic fuzzy subset $\mu_A: X \to [0, 1]$ and $\gamma_A: X \to [0, 1]$ by

 $\mu_A = \begin{pmatrix} 0 & a & b & c \\ 0.8 & 0.7 & 0.5 & 0.5 \end{pmatrix} \text{ and } \gamma_A = \begin{pmatrix} 0 & a & b & c \\ 0.2 & 0.2 & 0.4 & 0.3 \end{pmatrix}$ Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy q-ideal of X.

Proposition 3.3: Every Intuitionistic fuzzy q-ideal of a BCI-algebra X is an intuitionistic fuzzy ideal of X.

Proof: Let $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy q-ideal of X. Let $x, y \in X$. Putting z=0 in Definition 3.1 (i4) and (i5) and using (b1), we have

$$\mu_A(x) = \mu_A(x * 0) \ge \min \{ \mu_A(x * (y * 0)), \mu_A(y) \}$$

= min { $\mu_A(x * y), \mu_A(y) \}.$

Also,

$$\gamma_A(x) = \gamma_A(x * 0) \le \max \{\gamma_A(x * (y * 0)), \gamma_A(y)\}$$
$$= \max\{\gamma_A(x * y), \gamma_A(y)\}.$$

Hence (i2) and (i3) holds. Thus $A = (\mu_A, \gamma_A)$ is an Intuitionistic fuzzy ideal of X.

The converse of Proposition 3.3 is not true as seen the following example.

Example 3.4: Let $X = \{0, a, b, c\}$ be a BCI-algebra in which the * - operation is given by the following table:

*	0	а	b	c
0	0	с	b	a
a	a	0	с	b
b	b	a	0	с
с	с	b	a	0

Note that {0} is an ideal of X, but not a q-ideal of X since $c * (0 * a) = c * c = 0 \in \{0\}$ by and $0 \in \{0\}$

But $c * a = b \notin \{0\}$. Define an Intuitionistic fuzzy subset

 $\mu_A: X \to [0, 1] \text{ and } \gamma_A: X \to [0, 1] \text{ by}$ $\mu_A = \begin{pmatrix} 0 & a & b & c \\ 0.8 & 0.7 & 0.5 & 0.5 \end{pmatrix} \text{ and } \gamma_A = \begin{pmatrix} 0 & a & b & c \\ 0.2 & 0.2 & 0.4 & 0.3 \end{pmatrix}$ Then $A = (\mu_A, \gamma_A)$ is an Intuitionistic fuzzy ideal of X, but not an Intuitionistic fuzzy q-ideal of X.

Corollary 3.5: If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of a BCI-algebra X, then the following holds: $(\forall x, y \in X)(x \le y => (\mu_A(x) \ge \mu_A(y)) \text{ and } (\gamma_A(x) \le \gamma_A(y)).$

Proof: It follows from the Proposition 2.2 and Proposition 3.3.

Theorem 3.6: If $A = (\mu_A, \gamma_A)$ is an Intuitionistic fuzzy ideal of a BCI-algebra X, then the following are equivalent:

(1) $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy q-ideal of X,

164

JNAO Vol. 14, Issue. 2, No. 1 : 2023 165 (2) $(\forall x, y \in X) (\mu_A(x * y) \ge (\mu_A(x * (0 * y)))$ and $(\gamma_A(x * y) \le (\gamma_A(x * (0 * y))))$ (3) $(\forall x, y, z \in X) (\mu_A((x * y) * z) \ge \mu_A(x * (y * z)) \text{ and } (\gamma_A((x * y) * z) \le \gamma_A(x * (y * z)))$ **Proof:** (1) => (2).Let $x, y \in X$. Putting y = 0 and z = y in Definition 3.1 (i4), (i5) and use (d1), we have $\mu_A(x * y) \ge \min \{(\mu_A(x * (0 * y), (\mu_A(0))\}) = (\mu_A(x * (0 * y))) \text{ and } \}$ $\gamma_A(x * y) \le \max\{(\gamma_A(x * (0 * y), (\gamma_A(0))\} = (\gamma_A(x * (0 * y)))\}$ Thus (2) holds. (2) => (3) Since for any $x, y, z \in X$, ((x * y) * (0 * z)) * (x * (y * z)) = ((x * y) * (x * (y * z))) * (0 * z) $\leq ((y * z) * y) * (0 * z) = (0 * z) * (0 * z) = 0,$ We have $(x * y) * (0 * z) \le x * (y * z)$. Using (2) and Proposition 2.4, we get $\mu_A(x * (y * z)) \le \mu_A((x * y) * (0 * z) \le \mu_A((x * y) * z)$ and $\gamma_A(x * (y * z)) \ge \gamma_A((x * y) * (0 * z) \ge \gamma_A((x * y) * z).$ Hence (3) holds. (3) => (1) Let $x, y, z \in X$. Using (d2), (b2) and (3), we have $\mu_A(x * z) \ge \min \{\mu_A((x * z) * y), \mu_A(y)\}$ $= \min \left\{ \mu_A \big((x * y) * z \big), \mu_A(y) \right\}$ $\geq \min \left(\mu_A (x * (y * z)), \mu_A (y) \right).$ Also, $\gamma_A(x * z) \le \max \{\gamma_A((x * z) * y), \gamma_A(y)\}$ $= \max \{ \gamma_A((x * y) * z), \gamma_A(y) \}$

$$< max (v_A(x * (v * z)), v_A(v))$$

Hence $A = (\mu_A, \gamma_A)$ is an Intuitionistic fuzzy q-ideal of a BCI-algebra X.

Proposition 3.7: Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy ideal of X. If $\mu_A(x) \le \mu_A(x * y)$ and $\gamma_A(x) \ge \gamma_A(x * y)$ for any $x, y, z \in X$, then A is an intuitionistic fuzzy q-ideal of X. **Proof :** For any $x, y, z \in X$, we have

$$\mu_A(x * z) \ge \mu_A(x)$$

$$\ge \min (\mu_A(x * (y * z)), \mu_A(y * z))$$

$$\ge \min (\mu_A(x * (y * z)), \mu_A(y)).$$

Also,

$$\begin{aligned} \gamma_A(x * z) &\leq \gamma_A(x) \\ &\leq \max\left(\gamma_A\big(x * (y * z)\big), \gamma_A(y * z)\right) \\ &\leq \max\left(\gamma_A\big(x * (y * z)\big), \gamma_A(y)\right). \end{aligned}$$

Hence $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy q-ideal of X.

4. Intuitionistic Fuzzy q-ideals of BCI-Algebras with degree in the inteval (0,1] In what follows let X denote a BCI-algebra unless specified otherwise.

Definition 4.1 : Let I be a non-empty subset of a BCK/BCI- algebra X which is not necessary an ideal of X. We say that a subset J of X is an *enlarged ideal* of X related to I if it satisfies:

(1) I is a subset of J,

 $(2) \qquad 0 \in J,$

 $(3) \qquad (\forall x \in X)(\forall y \in I)(x * y \in I => x \in J).$

Definition 4.2: Let *I* be a non-empty subset of a BCI-algebra X which is not necessary a q-ideal of X. We say that a subset *J* of X is an *enlarged* q-*ideal* of X if it satisfies:

(1) I is a subset of J,

166

 $(2) \quad 0 \in J,$

 $(3) \ (\forall x, z \in X) (\forall y \in I) (x * (y * z) \in I \implies x * z \in J)$

Obviously, every q-ideal is an enlarged q-ideal of X related to itself. Note that there exists an enlarged q-ideal of X related to any non-empty subset I of a BCI-algebra X.

Example 4.3: Let $X = \{0, 1, a, b, c\}$ be a BCI-algebra in which the * operation is given by the following table:

*	0	1	a	b	с
0	0	0	а	b	с
1	1	0	a	b	с
a	a	a	0	c	b
b	b	b	с	0	a
с	с	с	b	a	0

Note that $\{0, a\}$ is not both an ideal of X and a q-ideal of X. Then $\{0,1,a\}$ is an enlarged ideal of X related to $\{0, a\}$ and an enlarged q-ideal of X elated to $\{0, a\}$.

Theorem 4.4: Let I be a non-empty subset of a BCI-algebra X. Every enlarged q-ideal of X related to I is an enlarged ideal of X related to I.

Proof: Let J be an enlarged q-ideal of X related to I. Putting z=0 in Definition 4.2(3) and use (b1), we have

 $(\forall x \in X)(\forall y \in I)(x * (y * 0) => x * y \in I => x * 0 = x \in J).$ Hence *J* is an enlarged ideal of X related to *I*.

The converse of Theorem 4.4 does not true in general as seen in the following example.

Example 4.5: Consider a BCI-algebra $X = \{0, a, b, c\}$ as in Example 3.4. Note that $\{0,a\}$ is not both an ideal and a q-ideal of X. Then $\{0, a, b\}$ is an enlarged ideal of X related to $\{0, a\}$ but not an enlarged q-ideal of X related to $\{0, a\}$ since $0 * (a * a) = 0 \in \{0, a\}$ and $0 * a = c \notin \{0, a, b\}$.

In what follows let α , β , ρ , and σ be members of (0, 1], and let *n* and *k* denote a natural number and a real number, respectively, such that *k* < *n* unless otherwise specified.

Definition 4.6: An intuitionistic fuzzy subset $A = (\mu_A, \gamma_A)$ of a BCK/BCI-algebra X is called an intuitionistic fuzzy ideal of X with degree $(\alpha, \beta, \rho, \sigma)$ if it satisfies: (1) $(\forall x \in X)(\mu_A(0) \ge \alpha \,\mu_A(x)), (\gamma_A(0) \le \beta \,\gamma_A(x)),$ (2) $(\forall x, y \in X)(\mu_A(x) \ge \rho \min\{\mu_A(x * y), \mu_A(y)\}),$ (3) $(\forall x, y \in X)(\gamma_A(x) \le \sigma \max\{\gamma_A(x * y), \gamma_A(y)\}).$

Definition 4.7: An intuitionistic fuzzy subset $A = (\mu_A, \gamma_A)$ of a BCI-algebra X is called an intuitionistic fuzzy q-ideal of X with degree $(\alpha, \beta, \rho, \sigma)$ if it satisfies: (1) $(\forall x \in X)(\mu_A(0) \ge \alpha \mu_A(x)), (\gamma_A(0) \le \beta \gamma_A(x)),$

 $(1) (\forall x \in X)(\mu_A(0) \ge u \ \mu_A(x)), \ (\forall A(0) \le p \ \forall_A(x)),$

(2) $(\forall x, y, z \in X)(\mu_A(x * z) \ge \rho \min\{\mu_A(x * (y * z), \mu_A(y)\}),$ (3) $(\forall x, y, z \in X)(\gamma_A(x * z) \le \sigma \max\{\gamma_A(x * (y * z)), \gamma_A(y)\}).$

Note that if $\alpha \neq \rho$, $\beta \neq \sigma$, then an intuitionistic fuzzy ideal of X with degree $(\alpha, \beta, \rho, \sigma)$ may not be an intuitionistic fuzzy q-ideal of X with degree $(\alpha, \beta, \rho, \sigma)$ and vice versa.

Proposition 4.8: If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy q-ideal of a BCI-algebra X with $(\alpha, \beta, \rho, \sigma)$,

then A is an Intuitionistic fuzzy ideal of X with degree $(\alpha, \beta, \rho, \sigma)$. **Proof:** Put *z*=0 in Definition 4.7 (2) and (3).

Proposition 4.9: If
$$A = (\mu_A, \gamma_A)$$
 is an intuitionistic fuzzy q-ideal of a BCI-algebra X with
 $(\alpha, \beta, \rho, \sigma)$, then
(1) $(\forall x, y \in X)(x \le y => \mu_A(x) \ge \alpha \rho \, \mu_A(y))$, $(\gamma_A(x) \le \beta \sigma \, \gamma_A(y))$.
(2) $(\forall x, y \in X) (\mu_A(x * y) \ge \alpha \rho \, \mu_A(x * (0 * y)) \text{ and } (\gamma_A(x * y) \le \beta \sigma \, \gamma_A(x * (0 * y)))$
(3) $(\forall x, y, z \in X) (\mu_A((x * y) * z)) \ge \alpha^2 \rho^2 \, \mu_A(x * (y * z)) \text{ and} (\gamma_A((x * y) * z) \le \beta^2 \sigma^2 \, \gamma_A((x * (y * z))))$.

JNAO Vol. 14, Issue. 2, No. 1 : 2023

Proof: (1) Let $x, y \in X$ be such that $x \le y$. Then x * y = 0. Putting z = 0 in Definition 4.7 (2) and (3) and using (b1), we have

$$\mu_{A}(x) = (\mu_{A}(x * 0) \ge \rho \min\{\mu_{A}(x * (y * 0), \mu_{A}(y)\}) \\ = \rho \min\{\mu_{A}(x * y), \mu_{A}(y)\} \\ = \rho \min\{\mu_{A}(0), \mu_{A}(y)\} \\ \ge \rho \min\{\alpha\mu_{A}(y), \mu_{A}(y)\} \\ = \rho \alpha\mu_{A}(y).$$

Also

167

$$\gamma_A(x) = (\gamma_A(x * 0) \le \sigma \max\{\gamma_A(x * (y * 0), \gamma_A(y)\})$$

= $\sigma \max\{\gamma_A(x * y), \gamma_A(y)\}$
= $\sigma \max\{\gamma_A(0), \gamma_A(y)\}$
 $\le \sigma \max\{\beta\gamma_A(y), \gamma_A(y)\}$
= $\sigma \beta\gamma_A(y).$

(2) Let
$$x, y \in X$$
. Putting $x = x, y = 0$ and $z = y$ in Definition 4.7 (2) and (3), we have
 $\mu_A(x * y) \ge \rho \min \mu_A(x * (0 * y), \mu_A(0))$
 $\ge \rho \min\{\mu_A(x * (0 * y), \alpha \mu_A((x * (0 * y)))\}$
 $= \alpha \rho \mu_A((x * (0 * y)).$

Also,

$$\begin{aligned} \gamma_A(x*y) &\leq \sigma \max \gamma_A(x*(0*y), \gamma_A(0)) \\ &\leq \sigma \max\{\gamma_A(x*(0*y), \beta\gamma_A((x*(0*y)))\} \\ &= \beta \sigma \gamma_A((x*(0*y)). \end{aligned}$$

(3) Since

$$((x * y) * (0 * z) * (x * (y * z)) = ((x * y) * (x * (y * z)) * (0 * z)$$

$$\leq ((y * z) * y) * (0 * z)$$

$$= (0 * z) * (0 * z) = 0, \forall x, y, z \in X,$$

We get $(x * y) * (0 * z) \le (x * (y * z)).$

It follows from (2) and Proposition 4.9(1) that

$$\mu_A((x*y)*z) \ge \alpha \rho \,\mu_A((x*y)*(0*z))$$
$$\ge \alpha^2 \rho^2 \mu_A(x*(y*z)).$$

And

$$\gamma_A((x*y)*z) \leq \beta \sigma \ \gamma_A((x*y)*(0*z))$$
$$\leq \beta^2 \sigma^2 \gamma_A(x*(y*z)).$$

Corollary 4.10: $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy q-ideal of a BCI-algebra X with $(\alpha, \beta, \rho, \sigma)$. If $\alpha = \rho, \beta = \sigma$, then the following hold:

- (1) $(\forall x, y \in X)(x \le y \implies \mu_A(x) \ge \alpha^2 \mu_A(y)), \gamma_A(x) \le \beta^2 \gamma_A(y)).$
- (2) $(\forall x, y \in X) (\mu_A(x * y)) \ge \alpha^2 \mu_A(x * (0 * y)) \text{ and } (\gamma_A(x * y)) \le \beta^2 \gamma_A(x * (0 * y)).$ (3) $(\forall x, y, z \in X) (\mu_A((x * y) * z)) \ge \alpha^4 \mu_A(x * (y * z)) \text{ and } (\gamma_A((x * y) * z)) \le \beta^4 \gamma_A(x * (0 * y)).$

Proposition 4.11: Let $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of a BCI-algebra X with $(\alpha, \beta, \rho, \sigma)$. If $\mu_A(x) \le \mu_A(x * y), \gamma_A(x) \ge \gamma_A(x * y)$ for any $x, y \in X$, then A is an intuitionistic fuzzy q-ideal of X with degree $(\alpha, \beta, \rho, \sigma)$.

168

Proof: For any $x, y, z \in X$, we have

$$(\mu_A(x)) \ge \rho \min \{\mu_A(x \ast (y \ast z)), \mu_A(y \ast z)\}),$$

$$(\gamma_A(x)) \le \sigma \max \{\gamma_A(x \ast (y \ast z)), \gamma_A(y \ast z)\})$$

By assumption, we obtain $\mu_A(x * z) \ge \mu_A(x)$)

$$\geq \rho \min \left\{ \mu_A(x * (y * z)), \mu_A(y * z) \right\}$$

and

$$\geq \rho \min \{\mu_A(x * (y * z)), \mu_A(y)\}$$

$$\gamma_A(x * z) \leq \gamma_A(x))$$

$$\leq \sigma \max \{\gamma_A(x * (y * z)), \gamma_A(y * z)\}$$

$$\leq \sigma \max \{\gamma_A(x * (y * z)), \gamma_A(y)\}$$

Thus A is an Intuitionistic fuzzy q-ideal of X.

References

[1] K.T.Atanassov, Intuitionistic Fuzzy Sets, Fuzzy sets and systems, 20(1986), 87-96.

[2] K.T.Atanassov, Intuitionistic Fuzzy Sets, Theory and Applications, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica – Verlag 1999.

[3] C. L.Chang, Fuzzy topological spaces, J. Math. Anal.Appl. 24 (1968),182-190.

[4] Y. Huang, BCI-algebras, Science Press, Beijing, 2006.

[5] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.

[6] K.Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon.23 (1978/79) no. 1, 1-26.

[7] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math.Japon. 40 (1994), 271-282.

[8] Y. L.Liu, J. Meng, X.H. Zhang and Z. C. Yue, q-deals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2000), 243-353.

[9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.

[10] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935-942.

[11] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.